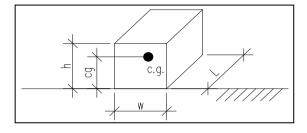
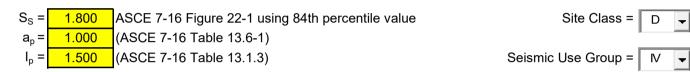
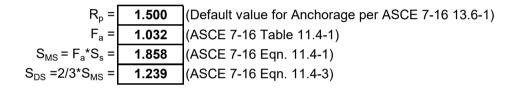

Project: ENCORE page: 1 of 2


Date: 09/06/22 Engineer: BMH

RBI ENCORE RB0850 INDOOR DUAL FUEL UNIT - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)


Slab on Grade Applications Only


Equipment Parameters:

Seismic Parameters:

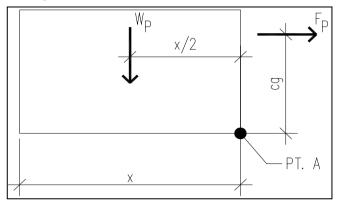
Seismic Design Category = D

Seismic Force:

$$F_{p} = (0.4*a_{p}*S_{DS}*W_{p})/(R_{p}/I_{p}) = 314.8 \text{ LBS. (ASCE 7-16 Eqn. 13.3-1)}$$
 Upper Limit: $F_{pMAX} = 1.6*S_{DS}*I_{p}*W_{p} = 1889.1 \text{ LBS. (ASCE 7-16 Eqn. 13.3-2)}$ Lower Bound: $F_{pMIN} = 0.3*S_{DS}*I_{p}*W_{p} = 354.2 \text{ LBS. (ASCE 7-16 Eqn. 13.3-3)}$
$$F_{p, DESIGN} = 354.2 \text{ LBS.}$$

Project: ENCORE page: 2 of 2

Date: 09/06/22 Engineer: BMH


RBI ENCORE RB0850 INDOOR DUAL FUEL UNIT - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)

Design Anchorage Force:

Horizontal Shear Force Per Anchor:

$$R_H = F_p/4 = 88.5$$
 LBS.

Overturning Resistance About Point A:

$$x = 39.31$$
 in. $x = lesser of L or h$

$$M_{OT} = F_p * cg = 10820.8$$
 LBS.-FT.

$$M_{RES} = W_p^* x/2 = 12487.0$$
 LBS.-FT. **OK, No Uplift**

Vertical Acceleration: assume $\rho = 1.0$

Ev =
$$\rho^*$$
Fp + 0.2*S_{DS}*W = **246.0** LBS. (IBC Eqn. 1617.1.1)

$$R_{VNETUP} = (M_{OT}/(2*x))-(W_p/4)+(Ev/4) = 40.3$$
 LBS. No Uplfit

Force Summary Per Corner:

Component Anchorage:

$$R_{HNET} =$$
 88.5 LBS. $R_{VNETUP} =$ 40.3 LBS.

Anchors Embedded in Concrete or CMU:

$$1.3*R_p*R_{HNET} =$$
 172.7 LBS. (IBC 1617.1.7 #2)
 $1.3*R_p*R_{VNETUP} =$ **78.6** LBS. (IBC 1617.1.7 #2)